В чем проявляются полезные взаимосвязи гриба и водоросли

        Вопрос взаимоотношения гриба и водоросли в слоевище лишайника занимал умы ученых еще в конце прошлого столетия, да и в наше время продолжает волновать лихенологов. Со дня открытия С. Швенденера прошло более 100 лет. За этот период появилось не менее десятка теорий, пытающихся объяснить отношения между грибом и водорослью, однако среди них нет ни одной общепризнанной и окончательно доказапной. С. Швенденер, обнаружив, что лишайник состоит из гриба и водоросли, предположил, что гриб в слоевище паразитирует на водоросли. Однако он ошибочно отвел грибу роль хозяина, а водоросли — раба.

        Но уже в те времена некоторые ученые выдвинули мысль о двустороннем паразитизме компонентов лишайника — гриба на водоросли и водоросли на грибе. При этом было высказано предположение, что гриб и водоросль в слоевище лишайника находятся в полном морфофизиологическом единстве и связаны между собой так же, как корни и листья цветковых растений. Такое сравнение, безусловно, было совсем необоснованным.

        Наибольшее распространение среди ученых того времени получила теория мутуалистического симбиоза. Сторонники этой теории считали, что в слоевище лишайника гриб и водоросль находятся во взаимовыгодном симбиозе: водоросль «снабжает» гриб органическими веществами, а гриб «защищает» водоросль от чрезмерного нагревания и освещения и «обеспечивает» ее водой и неорганическими солями. Однако в 1873 г. этой идеалистической теории был нанесен удар. Известный французский исследователь Е. Борне, изучая анатомическое строение слоевища лишайников, обнаружил внутри водорослевых клеток грибные отростки — гаустории, всасывающие органы гриба. Это позволяло думать, что гриб использует содержимое клеток водорослей, т. е. ведет себя как паразит.

        За прошедшие со времен Борне 100 лет в слоевище лишайников было открыто и описано много различных форм абсорбционных, или всасывающих, гиф гриба. Эти гифы плотно прижимаются к клетке водоросли или проникают в нее и служат, как предполагают, для передачи веществ, которые образуют водоросли в результате своей жизнедеятельности, грибному компоненту.

        О том, что в слоевище лишайника происходит обмен веществами между грибом и водорослью, ученые стали говорить сразу после открытия двойственной природы лишайников. Однако некоторые экспериментальные подтверждения этим предположениям были получены лишь за последние три десятилетия. Применение новейших методов физиологических исследований с использованием меченых атомов углерода и азота, особых красящих веществ и некоторых других позволило установить, что гриб получает вещества, ассимилируемые водорослью, и ведет себя в слоевище лишайника как паразитический организм. Однако для существования как самого гриба, так и лишайника в целом необходимо, чтобы водоросль, окруженная со всех сторон грибными гифами, все-таки могла жить и более или менее нормально развиваться. Если гриб начнет проявлять себя слишком активно, поражать все без исключения водоросли и, использовав их содержимое, уничтожать их, это в конце концов может привести к гибели всех водорослей слоевища. Но тогда, уничтожив весь свой запас питания, погибнет и сам гриб, а значит, перестанет существовать и лишайник.

        Гриб должен использовать лишь часть водорослей, оставляя резерв — здоровые и нормальные водоросли, содержимым которых он мог бы питаться.

        Учеными были замечены любопытные защитные реакции со стороны лишайниковых водорослей. Например, одновременно с проникновением гаустория в клетку водоросли эта клетка делилась. При этом плоскость деления, как правило, проходила как раз через участок, занятый гаусторием, а образовавшиеся в результате этого процесса дочерние клетки были свободны от гаусториев. Было замечено также, что обычно гриб поражает водоросли, уже достигшие определенной стадии зрелости. В молодых растущих водорослях происходит энергичное отложение веществ в оболочке клетки и быстрое ее утолщение. Эта толстая оболочка клетки фикобионта препятствует проникновению абсорбционных органов гриба. Однако большей частью защитная реакция водорослей против активности грибного компонента очень слаба.

        Способность водорослей нормально развиваться и даже размножаться в слоевище лишайника сохраняется скорее благодаря умеренности паразитизма самого гриба.

        Ученые отмечают, что степень паразитизма гриба на водоросли различна не только у разных видов лишайников, но даже в одном и том же слоевище. Резкий паразитизм обнаружен лишь у примитивных лишайников. Гаустории, проникающие глубоко внутрь протопласта водоросли, пока что были найдены лишь у наиболее просто организованных форм, в слоевище которых еще нельзя различить оформленных дифференцированных слоев. В слоевищах более высокоорганизованных лишайников часть клеток водорослей поражена грибными гифами, а остальные продолжают нормально жить и развиваться. Обычно у высокоорганизованных форм лишайников паразитизм гриба на водоросли носит весьма умеренный характер: прежде чем гриб убьет пораженные им клетки, успевает вырасти одно или несколько поколений водорослей.

        Отношения между мико- и фикобионтом в. слоевище лишайника не сводятся только к паразитизму гриба на водоросли. Ученые предполагают, что эти отношения гораздо сложнее. Еще в начале нашего века крупнейший русский лихенолог А. А. Еленкин, изучая анатомическое строение лишайников, обнаружил в их слоевище некральные зоны водорослей — скопления отмерших, потерявших зеленую окраску клеток, расположенные несколько ниже зоны живых водорослей. К этим бесцветным мертвым

        клеткам водорослей тоже тянулись грибные гифы. Это привело А. А. Еленкина к мысли, что гриб в слоевище лишайника вначале проявляет себя как паразитический организм, поражая живые клетки водоросли и используя их содержимое. Затем, убив водоросль, гриб переходит к сапрофитному способу питания, поглощая и ее мертвые остатки. Таким образом, гриб в слоевище лишайника ведет себя и как паразит, и как сапрофит. И отношения между грибом и водорослью в слоевище лишайника А. А. Еленкин назвал эндопаразитосапрофити змом.

        Интересную мысль о взаимоотношении компонентов в слоевище лишайника высказал в 60-х годах нашего столетия крупнейший советский лихенолог А. Н. Окснер. Он пришел к выводу, что водоросль в слоевище лишайника, полностью изолированная от внешней среды грибной тканью, обязательно должна забирать у грибного компонента все необходимые для своего существования вещества, за исключением тех органических соединений, которые она сама вырабатывает на свету в процессе ассимиляции углекислоты. К этим жизненно необходимым для водоросли веществам относится прежде всего вода, а также минеральные соли, азотистые и некоторые другие неорганические соединения. Следовательно, и водоросль в слоевище лишайника проявляет себя как паразит. Причем это вовсе не противоречит общему характеру ее питания. Как показало изучение лишайниковых водорослей в чистых культурах, многие из них, будучи большей частью автотрофными организмами, способны и к миксотрофному питанию.

        Таким образом, ученые считают, что водорослевый и грибной компоненты лишайника находятся в очень сложных взаимоотношениях. Микобионт ведет себя как паразит и сапрофит на теле водоросли, а фикобионт, в свою очередь, паразитирует на лишайниковом грибе. При этом паразитизм фикобионта всегда носит более умеренный характер, чем паразитизм гриба.

        Однако все высказанные по этому поводу точки зрения до сих пор остаются лишь догадками и большей частью не подтверждены экспериментально: лишайники оказались очень трудным объектом для физиологических исследований. Ученые пока не научились выращивать и поддерживать в живом состоянии слоевище лишайников в искусственных условиях. Тот контакт между грибом и водорослью, который с такой легкостью достигается в природе (достаточно вспомнить многообразие лишайников!), никак не удается воспроизвести в лабораторных условиях. Наоборот, при переносе лишайников в лабораторию этот контакт легко нарушается и растение просто погибает. Время от времени появляются сообщения об удачных опытах выращивания лишайника в условиях лаборатории, но пока эти сообщения единичны и не всегда достоверны.

        Одной из причин неудач подобных попыток можно считать чрезвычайно медленный рост лишайников. Лишайники — многолетние растения. Обычно возраст взрослых слоевищ, которые можно увидеть где-нибудь в лесу на стволе деревьев или на почве, составляет не менее 20—50 лет. В северных тундрах возраст некоторых кустистых лишайников рода кладония достигает 300 лет. Слоевище лишайников, имеющих вид корочки, в год дает прирост всего 0,2—0,3 мм.

        Кустистые и листоватые лишайники растут несколько быстрее — в год их слоевище увеличивается на 2—3 мм. Поэтому, чтобы вырастить взрослый лишайник в лаборатории, требуется не менее 20 лет, а может быть, и вся жизнь исследователя. Трудно проводить столь долговременный эксперимент!

        Вот почему физиологические особенности лишайников, в том числе взаимоотношения компонентов, как правило, изучают на культурах изолированных мико- и фикобионтов. Этот метод очень перспективен, так как позволяет ставить длительные и воспроизводимые опыты. Но, к сожалению, данные, полученные этим методом, не могут полностью отразить те процессы, которые происходят в целом слоевище лишайника.

        И тем более мы не вправе считать, что в природе, в естественных условиях, в слоевищах лишайника эти процессы протекают точно так же, как в культурах изолированных симбионтов. Вот почему все теории, пытающиеся объяснить взаимоотношения компонентов лишайников, остаются пока лишь догадками.

        Более успешным оказалось изучение форм контакта между гифами гриба и клетками водорослей в слоевищах лишайников. Как показали исследования с применением электронной микроскопии, в слоевище лишайников можно встретить по крайней мере пять типов контакта между грибными гифами и водорослевыми клетками (рис. 289).

в чем проявляются полезные взаимосвязи гриба и водоросли

        Чаще всего отдельная клетка водоросли и клетка грибной гифы находятся в непосредственном контакте друг с другом. В таком случае гриб образует специальные абсорбционные, всасывающие органы, которые проникают внутрь водорослевой клетки или плотно прижимаются к ее оболочке.

        В настоящее время среди абсорбционных органов гриба в слоевище лишайников различают несколько типов: гаустории, импрессории и аппрессории.

        Гаустории — это боковые выросты гиф гриба, которые прорывают оболочку клетки водоросли и проникают в ее протопласт (рис. 289, 2). Обычно в клетке водоросли развивается один гаусторий, но иногда их может быть и два. В слоевище лишайника гаустории встречаются в большом количестве и существуют продолжительное время. Было замечено, что в оболочках молодых гаусториев нет отложений целлюлозы, которая могла бы затруднять обмен между клеткой водоросли и гифой гриба. Старые гаустории почти всегда одеты довольно толстым слоем целлюлозы. Различают интрацеллюлярные (внутриклеточные) и интрамембранные (внутриоболочковые) гаустории.

        Интрацеллюлярные гаустории полностью прорывают оболочку клетки водоросли и проникают глубоко внутрь ее протопласта (рис.289, 3). Интрацеллюлярные гаустории образуются в случае резкого паразитизма гриба на водоросли. Это особенно характерно для лишайников с примитивным строением слоевища.

        У более высокоорганизованных лишайников образуются только интра мембранные гаустории. Они прорывают оболочку клетки водоросли и достигают ее протопласта, но не углубляются в него, а остаются в оболочке водорослевой клетки (рис. 289, 5). Наибольшее количество интрамембранных гаусториев образуется в слоевище лишайников весной, в начале вегетационного периода. С наступлением осени они далеко отступают от протопласта водоросли.

        Другой тип всасывающих органов гриба — импрессорий — тоже боковые выросты грибных гиф, но, в отличие от гаусториев, они пе прорывают оболочку клетки водоросли, а вдавливают ее внутрь (рис. 289, 6, 7). Импрессорий отмечены у очень многих лишайников, например у широко распространенной пельтигеры (Peltigera).

        Интересно, что в слоевищах, произрастающих во влажных местообитаниях, импрессории почти не развиваются, у тех же видов в сухих местообитаниях они образуются в большом количестве. При длительной засухе число импрессориев также увеличивается. Предполагают, что в засушливые периоды и в сухих местообитаниях гриб, чтобы удовлетворить потребности в питании, увеличивает свою всасывающую поверхность за счет увеличения количества и размеров импрессориев.

        В отличие от гаусториев и импрессориев, образованных боковыми отростками гифы, аппрессории образуются вершиной грибной гифы. Такая вершина гифы плотно прижимается снаружи к оболочке клетки водоросли, никогда не проникая ни в ее протопласт, ни в ее внутренний слой (рис. 289, 8).

        Наличие в слоевищах многих лишайников абсорбционных органов гриба хорошо доказывает паразитическую сущность отношений микобионта к фикобионту. Но во многих случаях у лишайникового гриба все же не удается обнаружить особых абсорбционных органов, чаще всего у лишайников, фикобионт которых имеет тонкие оболочки клеток. В таких случаях уже внешний контакт гифы гриба и клетки водоросли может обеспечить обмен веществами между ними. Так, например, обстоит дело у многих видов рода кладония. Фикобионтом кладонии является одноклеточная зеленая водоросль требуксия. У этих лишайников отдельные клетки водорослей окружены со всех сторон тонкими тонкостенными гифами, иногда поделенными на мелкие клеточки. Эти гифы, которые носят название обволакивающих или контактных, не проникают в протопласт клеток водоросли и не внедряются в их оболочку, а просто окружают клетки со всех сторон, так что каждая из них становится похожей на маленький шар, охваченный пальцами рук (рис. 289, 2). Иногда гифы полностью оплетают водоросли в виде сплошного покрова и при этом, сливаясь своими стенками, даже образуют клеточную псевдопаренхимную ткань. На первый взгляд кажется, что водоросли не особенно страдают от плотного окружения гифами гриба: они долго сохраняют свою зеленую окраску и продолжают интенсивно делиться.

        По в более старых участках слоевища можно найти немало отмерших обесцвеченных клеток — гриб рано или поздно все-таки убивает водоросли.

        Такой же тип контакта между гифами гриба и клетками водорослей был найден у некоторых слизистых и базидиальных лишайников.

        У ряда лишайников, в слоевище которых встречаются нитчатые улотриксовые водоросли, можно наблюдать еще один тип контакта. Как правило, в таком случае нити водорослей бывают целиком покрыты грибными гифами. Причем лишь иногда гифы образуют на поверхности водорослевой пити рыхлую сетку. Чаще же они располагаются очень густо и, срастаясь своими стенками, образуют сплошной чехол. Отдельная лопасть такого лишайника имеет вид тончайшего волоса. Под микроскопом она напоминает полую трубку, стенки которой образованы сросшимися грибными гифами; внутри трубки тянется нить водоросли.

в чем проявляются полезные взаимосвязи гриба и водоросли

        У слизистых лишайников семейства коллемовых (Collemataceae) обычно не наблюдается никакого контакта между грибными гифами и клетками водорослей. Слоевище коллемовых не имеет дифференцированной структуры: нити водоросли посток разбросаны в беспорядке среди грибных гиф по всей толще слоевища (рис. 297, 2). Никаких абсорбционных отростков в клетках водорослей обычно пе заметно; гифы гриба и нити сине-зеленой водоросли расположены друг около друга, не вступая в видимый контакт. Предполагают, что в данном случае гриб поглощает органические вещества, ассимилируемые водорослями, прямо из слизи, которая обычно окружает нити ностока. Однако более тщательное изучение этих лишайников показало, что у многих видов коллемы (Collema) в слоевище время от времени образуются специальные абсорбционные гифы, которые тесно прижимаются к одной из клеток водорослевой пити, а через некоторое время можно наблюдать отмирание этой клетки.

        Описанные выше формы контакта между гифами микобионта и клетками водорослей, по всей видимости, не исчерпывают всего многообразия способов, с помощью которых гриб и водоросль в слоевище лишайников устанавливают между собой тесную связь. Исследования в этом направлении только начинаются. Можно думать, что дальнейшее изучение тончайших структур лишайникового слоевища с помощью электронного микроскопа не только даст много нового в описании физических контактов между грибным и водорослевым компонентами лишайников, но и откроет новые горизонты в понимании их взаимоотношений.

Жизнь растений: в 6-ти томах. — М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров. 1974.

Какие функции в организме лишайника выполняют гриб и водоросль?

  1. Гриб- поглощает минеральные вещества, выделяет углекислоту и воду (для водоросли), вырабатывает ряд веществ стимклирующих развитие водоросли.
  2. просвятительские
  3. Симбиотические. Больше у меня нет слов:)

Существует несколько теорий, объясняющих взаимоотношения гриба и водоросли в лишайниках, хотя еще не — biofine.ru

Существует несколько теорий, объясняющих взаимоотношения гриба и водоросли в лишайниках, хотя еще нет ни одной окончательно доказанной. Согласно первой, гриб паразитирует на водоросли, согласно второй, в лишайнике имеет место двусторонний паразитизм гриба на водоросли и водоросли на грибе. Появилась еще мутуалистическая теория, согласно которой гриб и водоросль находятся во взаимовыгодном симбиозе.

Паразитизм гриба отличается, как правило, умеренным характером, позволяющим нормально развиваться определенной части клеток водоросли. Более того, гриб проявляет себя как паразитический организм лишь до тех пор, пока не отомрет водоросль, а потом переходит на сапрофитное питание, используя остатки водоросли. Такие отношения гриба и водоросли в лишайнике носят название эндопаразитосапрофитизма. В свою очередь, водоросль получает от гриба воду, минеральные элементы, азотистые соединения, т. е. по отношению к грибу водоросль является паразитом, но несравненно более слабым.

Микобионт лишайника Cladonia cristatella формирует чешуйкообразные структуры с 5 видами Trebou-xia. При этом взаимоотношения у искусственно синтезированного лишайника имеют характер контролируемого паразитизма. Микобионт формирует лихенизированные структуры в основном с видами водорослей , свойственными естественным лишайникам.

П. А. Генкель выдвинул концепцию симбиоморфоза, согласно которой основой симбиоза является обмен метаболитами между его компонентами, регулируемый лишайником как целым, т. е. подтверждена теория Б. М. Козо-Полянского, считавшего, что лишайник представляет одновременно ценоз и организм. Наблюдения в природе и в опытах над образованием некрозов при переувлажнении у Parmelia physodes и Xanthoria parietina показывают, что на неблагоприятные условия лишайники реагируют как целое. Во время стресса для дыхания после исчерпания доступного пула субстрата начинают использоваться конституционные вещества, в результате чего наблюдаются некрозы. На некотором удалении от некрозов в теле лишайника наблюдаются картины типичного эндосапрофитизма и паразитизма. Гифы гриба внедряются в коричневые уже отмершие гонидии, в более редких случаях в зеленые. Проявление этих процессов наблюдается только у поврежденных лишайников. Концепция симбиоморфизма подтверждается и тем фактом, что выделяемые гонидиями метаболиты в лишайнике и изолированных культурах различны.

Среди лишайников есть так называемые лишайниковые паразиты. Так, Leciographa muscigenae строит свой таллом в талломе хозяина, лишайнике Physcia muscigenae, где и произрастает в течение всей своей жизни. Лишайник Lecidea verruca ведет паразитический образ жизни на других накипных лишайниках. Микобионт лишайника Chaenothecopsis consocista паразитирует на слоевище Chaenotheca chrysocephala. Однако паразитический тип питания среди лишайников встречается редко.

Практическое значение лишайников состоит в том, что они используются для приготовления медицинских препаратов, красителей, в парфюмерной промышленности как обладающие ароматическими свойствами. Они служат индикаторами загрязнения воздуха, имеют определенное кормовое значение, особенно для северных оленей. Съедобны также некоторые лишайники, произрастающие в степной и пустынной зонах, например Aspicilia esculenta, содержащий до 55—65 % оксалата кальция. У лишайника Romalina duriaci, произрастающего на нижних мертвых ветвях деревьев Acacia tortilis, содержание белка составляет 7,4 %, а углеводы составляют более половины — 55,4 % сухой массы лишайника, в том числе усвояемых — 28,7 %.

В литературе описана также ассоциация лишайника Usnea strigosa с насекомыми Lanelognatha theraiis, которая, видимо, строится на биологической роли лишайниковых кислот.

Взаимоотношения гриба и водоросли в теле лишайника

Наличие в слоевищах многих лишайников абсорбционных органов гриба хорошо доказывает паразитическую сущность отношений микобионта к фикобионту. Но во многих случаях у лишайникового гриба все же не удается обнаружить особых абсорбционных органов, чаще всего у лишайников, фикобионт которых имеет тонкие оболочки клеток. В таких случаях уже внешний контакт гифы гриба и клетки водоросли может обеспечить обмен веществами между ними. Так, например, обстоит дело у многих видов рода кладония. Фикобионтом кладонии является одноклеточная зеленая водоросль требуксия. У этих лишайников отдельные клетки водорослей окружены со всех сторон тонкими тонкостенными гифами, иногда поделенными на мелкие клеточки. Эти гифы, которые носят название обволакивающих или контактных, не проникают в протопласт клеток водоросли и не внедряются в их оболочку, а просто окружают клетки со всех сторон, так что каждая из них становится похожей на маленький шар, охваченный пальцами рук (рис. 289, 2). Иногда гифы полностью оплетают водоросли в виде сплошного покрова и при этом, сливаясь своими стенками, даже образуют клеточную псевдопаренхимную ткань. На первый взгляд кажется, что водоросли не особенно страдают от плотного окружения гифами гриба: они долго сохраняют свою зеленую окраску и продолжают интенсивно делиться.

Отдел лишайники

Отдел лишайники занимают особое место в растительном мире. Их строение очень своеобразно. Тело, называемое слоевищем, состоит из двух организмов — гриба и водоросли, живущих как один организм, В составе некоторых видов лишайников обнаружены бактерии. Такие лишайники представляют собой тройной симбиоз.

Слоевище образовано переплетением гиф гриба с клетками водорослей (зеленых и сине-зеленых).

Водоросль от гриба получает необходимую ей влагу и минеральные соли, гриб от водоросли — органические вещества, вырабатываемые ею в процессе фотосинтеза. Однако большая польза, извлекаемая грибом из симбиоза (сожительства) с водорослью, и наблюдаемые иногда внедрения гиф гриба в клетки водоросли позволяют полагать, что гриб может рассматриваться как паразит, а не как равноправный компонент симбиоза.

Живут лишайники на скалах, деревьях, почве, как на Севере, так и в тропических странах. Разные виды лишайников имеют различную окраску — от серой, желтоватой, зеленоватой до бурой и черной. В настоящее время известно более 20 000 видов лишайников. Изучает лишайники наука, которая называется лихенологией (от греч. «лейхен» — лишайник и «логос» — наука).

По морфологическим признакам (внешнему виду) лишайники делятся на три группы.

  1. Накипные, или корковые, прикрепляющиеся к субстрату очень плотно, образуя корку. Эта группа составляет около 80% всех лишайников.
  2. Листоватые, представляющие собой пластинку, похожую на пластинку листа, слабо прикрепленную к субстрату.
  3. Кустистые, представляющие собой свободные маленькие кустики.

Лишайники — очень неприхотливые растения. Они растут в самых бесплодных местах. Их можно встретить на голых скалах, высоко в горах, где не живут другие растения. Растут лишайники очень медленно. Например, «олений мох» (ягель) за год вырастает всего на 1 — 3 мм. Живут лишайники до 50 лет, а некоторые до 100 лет.

Размножаются лишайники вегетативно, кусочками слоевища, а также особыми группами клеток, появляющихся внутри их тела. Эти группы клеток образуются во множестве. Тело лишайника разрывается под давлением их разросшейся массы, и группы клеток разносятся ветром и дождевыми потоками.

Лишайники в природе и в хозяйственной деятельности играют важную роль. Лишайники являются первыми растениями, которые поселяются на скалах и им подобных бесплодных местах, где другие растения жить не могут. Лишайники разрушают поверхностный слой скалы и, отмирая, образуют слой гумуса, на котором уже могут поселяться другие растения.

Значение грибов для жизнедеятельности лишайников

Решение

Чаще всего в качестве неверного ответа указывают, что грибы, входящие в состав лишайника, обеспечивают половое размножение водоросли.

Лишайники представляют собой группу живых организмов, образованных в результате симбиоза грибов (из классов аскомицетов и базидиомицетов) с водорослями (зелеными, реже желтозелеными) или цианобактериями. Их взаимоотношения основаны на паразитизме и отчасти сапротрофности со стороны гриба. Водорослевый компонент лишайника (фикобионт) обеспечивает синтез органических соединений в результате фотосинтеза. Гриб (микобионт) обеспечивает прикрепление к субстрату и поглощение воды с растворенными в ней минеральными солями.

Лишайники

Лишайники — удивительные организмы, образованные симбиозом зеленой водоросли, преобразующей с помощью солнечной энергии угле­кислый газ воздуха в органические вещества, и гриба, который питается только готовым органическим веще­ством. Гриб получает от водоросли в основном углеводы, снабжая ее водой и минеральными веществами. Гриб и водоросль тесно зависят друг от друга. В основе этих взаимоотно­шений лежит первоначальный паразитизм гриба на водо­росли, который в процессе длительной эволюции привел к, образованию нового своеобразного организма. Лишайники не похожи ни на грибы, ни на водоросли. Форма их тела (слоевища) очень разнообразна. Накипные лишайники на­поминают тончайшие корочки, которые плотно срастаются с корой деревьев или с поверхностью камней и скал.

Листоватые лишайники поселяются на почве или на деревьях. Иногда под их сильно разросшимся покровом на плодовых деревьях размножаются насекомые-вредители и создаются условия для развития грибов-паразитов. Разно­образнейшие кустистые лишайники растут сплошным ков­ром в хвойных лишайниковых борах и тундре (олений мох) или свисают косматыми бородами с ветвей деревьев.

Обмен веществ у лишайников также особенный, не сходный ни с водорослями, ни с грибами. Лишайники образуют особые вещества, больше нигде в природе не встречающиеся. Это лишайниковые кислоты. Некоторые из них обладают стимулирующим, или антибиотическим, действием, например, усниновая кислота. Вероятно, поэ­тому ряд лишайников издавна применялся в народной медицине как противовоспалительное, вяжущее или тони­зирующее средство — отвары «исландского мха», напри­мер.

Благодаря сочетанию в одном организме гриба и во­доросли лишайники обладают рядом уникальных свойств.

Во-первых, это их способность расти там, где никакое другое растение не может поселиться и выжить: на камнях и скалах в самых суровых условиях Арктики или высоко­горий, на беднейших почвах тундр, торфяных болотах, на песках, на таких малопригодных для жизни предметах, как стекло, железо, кирпичи, черепица, кости. Лишайники находили на смоле, фаянсе, фарфоре, коже, картоне, ли­нолеуме, древесном угле, войлоке, полотняных и шелковых тканях и даже на старинных пушках! Именно лишайники первыми осваивают непригодную для других организмов среду обитания, например вулканические лавы, разлагая их. За это лишайники получили название «пионеров рас­тительности» Они прокладывают дорогу другим растени­ям. Вслед за лишайниками поселяются мхи и зеленые травянистые растения Лишайники легко переносят пяти­десятиградусные морозы в тундре, а в пустынях Азии и Африки — шестидесятиградусную жару. Легко переносят они и сильное высыхание.

Вторая особенность лишайников — их крайне медлен­ный рост. Ежегодно лишайник вырастает на один-пять миллиметров. Необходимо оберегать лишайниковый по­кров тундры, хвойных боров. Если его нарушить, он вос­станавливается очень долго. Самый маленький срок — около десяти лет. Лишенный такого покрова, тонкий слой почвы в тундре или сосняках подвергается эрозии, а это ведет к гибели и другой растительности.

Средний возраст лишайников от тридцати до восьми­десяти лет, а отдельные экземпляры, как это удалось уста­новить по косвенным данным, доживают до шестисот лет. Имеются сведения, что некоторые лишайники насчитыва­ют даже около двух тысяч лет. Наряду с секвойей и ости­стой сосной лишайники можно считать самыми долгоживущими организмами.

Лишайники очень чувствительны к чистоте окружаю­щего воздуха. Если в воздухе содержится значительная концентрация углекислого и особенно сернистого газа, лишайники исчезают. Эту их особенность предлагается использовать для оценки чистоты воздуха в городах и промышленных районах.

Своеобразие формы тела, обмена веществ, особеннос­тей роста, мест обитания позволяет считать лишайники, несмотря на их двойственную природу, самостоятельными организмами.

Симбиоз гриба и водоросли

Попытки разделить лишайник на гриб и водоросль делались давно, но чаще всего заканчивались неудачей: даже если соблюдались условия стерильности, не всегда была уверенность, что полученная культура — именно лишайниковый симбионт, а не внутренний паразит лишайника. Кроме того, опыты, обычно, не удавалось повторить, а ведь воспроизводимость — одно из главных требований, предъявляемых к эксперименту.Но вот в середине XX века была разработана стандартная методика и изолировано несколько десятков лишайниковых грибов (микобионтов) и лишайниковых водорослей (фотобионтов). Большая заслуга в этой работе принадлежит американскому ученому В. Ахмаджяну.

Микобионт лишайника чаще всего получали так. Со слоевища срезают плодовые тела — апотеции, внутри которых располагаются споры, и прикрепляют их с помощью вазелина к верхней крышке чашки Петри. Когда апотеции подсыхают, споры из них выпадают на дно чашки, где разлит тонкий слой желатиноподобного вещества агара (обычно это происходит не позднее чем через сутки). Далее, во избежание загрязнения, крышку с апотециями заменяют чистой. Споры на агаре начинают прорастать не сразу: у одних лишайников через сутки, у других — только через пять недель. Для прорастания спор некоторых видов лишайников в таких условиях требуется добавка витамина B1 и других веществ. Проросшие споры помещают в пробирки с питательной средой. За несколько недель (а иногда и месяцев) микобионты становятся видны невооруженным глазом. Они имеют форму компактных плотных комочков и разнообразны по цвету и размеру. Под микроскопом видно, что они состоят из мицелия (сплетения грибных гиф) и не имеют клеточной дифференциации, которая свойственна лишайниковому слоевищу. В. Ахмаджян предположил, что большая плотность этих колоний связана с самопаразитизмом микобионта: он обнаружил проникновение одних гиф внутрь других и объяснил это явление «привычкой» гриба в симбиотическом состоянии иногда проникать внутрь клетки водоросли.Выделение изолированного фотобионта — также трудоемкий и продолжительный процесс, требующий большой аккуратности и сноровки. Из растертого в кашицу лишайникового таллома микропипеткой извлекают одну водорослевую клетку с прилипшим к ней кусочком гифы, чтобы была уверенность, что это именно лишайниковая, а не посторонняя водоросль. Клетку несколько раз промывают, перенося из одной капли стерильной воды в другую, а потом помещают в органическую питательную среду. Через две-шесть недель колония водорослей становится видимой.

Итак, в лабораториях, в стерильных пробирках и колбах с питательной средой поселились изолированные симбионты лишайников.Имея в распоряжении чистые культуры лишайниковых партнеров, ученые решились на самый дерзкий шаг — синтез лишайника в лабораторных условиях.Первая удача на этом поприще принадлежит Е. Томасу, который в 1939 году в Швейцарии получил из мико- и фотобионтов лишайник кладония крыночковидная с хорошо различимыми плодовыми телами. В отличие от предыдущих исследователей, Томас выполнял синтез в стерильных условиях, что внушает доверие к полученному им результату. К сожалению, его попытки повторить синтез в 800 других опытах не удались.

Любимый объект исследования В. Ахмаджяна, принесший ему всемирную славу в области лишайникового синтеза, — кладония гребешковая. Этот лишайник широко распространен в Северной Америке и получил простонародное название «британские солдаты»: его ярко-красные плодовые тела напоминают алые мундиры английских солдат времен войны североамериканских колоний за независимость.Небольшие комочки изолированного микобионта кладонии гребешковой смешивали с фотобионтом, извлеченным из того же лишайника. Смесь помещали на узкие слюдяные пластинки, пропитанные минеральным питательным раствором и закрепленные в закрытых колбах. Внутри колб поддерживали строго контролируемые условия влажности, температуры и освещенности. Важным условием эксперимента было минимальное количество питательных веществ в среде. Как же вели себя лишайниковые партнеры в непосредственной близости друг к другу? Клетки водоросли выделяли особое вещество, которое «приклеивало» к ним гифы гриба, и гифы сразу начинали активно оплетать зеленые клетки. Группы водорослевых клеток скреплялись ветвящимися гифами в первичные чешуйки. Следующим этапом было дальнейшее развитие утолщенных гиф поверх чешуек и выделение ими внеклеточного материала, а в результате — образование верхнего корового слоя. Еще позже дифференцировались водорослевый слой и сердцевина, совсем как в слоевище природного лишайника. Эти опыты были многократно воспроизведены в лаборатории Ахмаджяна и всякий раз приводили к появлению первичного лишайникового слоевища.

Казалось бы, разгадана одна из главных загадок лишайника: как лишайник образуется из своих составных частей. Но из дальнейших опытов выяснилось, что все не так-то просто.Гриб, выделенный из кладонии гребешковой, помещали рядом с водорослями других лишайников. Среди них были зеленые и синезеленые фотобионты, изолированные из лишайников, а также свободноживущие водоросли, не встречающиеся в лишайниковом симбиозе. Выяснилось, что грибные гифы делают «первые шаги знакомства» одинаково, т.е. оплетают все водоросли и даже простые стеклянные шарики диаметром 10-15 мкм! Но следующие этапы «лихенизации» водорослей происходили уже по-разному, в зависимости от водорослевого партнера.Семнадцать водорослей, среди которых были и симбиотические и свободноживущие, оказались несовместимыми с микобионтом кладонии гребешковой. Гриб паразитировал на них, т.е. питался их телом, и клетки быстро разрушались. Синтез не получался. С водорослью же требуксия итальянская, изолированной из лишайника ксантория настенная, и со свободноживущей водорослью фридманния израильская микобионт образовал первичные чешуйки, т.е. остановился на первом этапе формирования слоевища. И, наконец, с четырьмя фотобионтами, выделенными из разных лишайников и принадлежащими к роду требуксия, гриб кладонии гребешковой образовал точно такое же слоевище, как со своим «родным» фотобионтом требуксия замечательная, с которым всегда сожительствует в природном лишайнике.Позже в той же лаборатории провели синтез другого лишайника, уснеи щетинистой, и отмечали такие же тенденции. Гифы микобионта с одинаковым успехом начинали оплетать не только клетки своей (симбиотической) водоросли, но и требуксии замечательной, характерной для других видов лишайников. Но если своя, родная водоросль выглядела между грибными нитями здоровой и зеленой и само слоевище уже через пять месяцев напоминало уснею, то чужеродные водоросли в окружении микобионта были бледными, желто-зелеными, да и слоевище не имело характерного для этого лишайника нитчатого строения.

По-видимому, лишайниковый гриб на первых этапах лихенизации не очень разборчив в отношении водорослевого партнера. Судьба будущего симбиоза целиком зависит от водоросли: если она сможет противостоять агрессии гиф — возникнет лишайниковое слоевище, если же гриб будет паразитировать, то клетки водоросли разрушатся и симбиоз не состоится. Ясно, что решающее значение имеют генетические особенности партнеров. Недаром самый удачный синтез получился между микобионтом кладонии гребешковой и водорослями рода требуксия, именно того рода, к которому принадлежит фотобионт данного лишайника.

Опыты по искусственному синтезу лишайников дали В. Ахмаджяну основание назвать взаимоотношения симбионтов контролируемым паразитизмом. Действительно, гриб получал органические вещества от фотосинтезирующей зеленой водоросли, так как в условиях стерильного опыта другого их источника у него не было. Однако такое «нахлебничество» должно быть ограниченным: стоит грибу «усилить свой аппетит», начать питаться телом самой водоросли — и водоросль разрушится, а вместе с ней погибнет и весь симбиотический организм.

В 40-е годы XX века немецкий ученый Ф. Тоблер обнаружил, что для прорастания спор ксантории настенной требуются добавки стимулирующих веществ: экстрактов из древесной коры, водорослей, плодов сливы, некоторых витаминов или других соединений. Было сделано предположение, что в природе прорастание некоторых грибов стимулируется веществами, поступающими из водоросли.

Примечательно, что для возникновения симбиотических отношений оба партнера должны получать умеренное и даже скудное питание, ограниченные влажность и освещение. Оптимальные условия существования гриба и водоросли отнюдь не стимулируют их воссоединение. Более того, известны случаи, когда обильное питание (например, при искусственном удобрении) вило к быстрому росту водорослей в слоевище, нарушению связи между симбионтами и гибели лишайника.

Если рассматривать срезы лишайникового слоевища под микроскопом, видно, что чаще всего водоросль просто соседствует с грибными гифами. Иногда гифы тесно прижимаются к водорослевым клеткам. Наконец, грибные гифы либо их ответвления могут более или менее глубоко проникать внутрь водоросли. Эти выросты называются гаусториями.

Совместное существование накладывает отпечаток и на строение обоих лишайниковых симбионтов. Так, если свободноживущие синезеленые водоросли родов носток, сцитонема и других образуют длинные, иногда ветвящиеся нити, то у тех же водорослей в симбиозе нити либо скручены в плотные клубочки, либо укорочены до единичных клеток. Кроме того, у свободноживущих и лихенизированных синезеленых водорослей отмечают различия в размерах и расположении клеточных структур.Зеленые водоросли также изменяются в симбиотическом состоянии. Это, в первую очередь, касается их размножения. Многие из зеленых водорослей, живя «на свободе», размножаются подвижными тонкостенными клеточками — зооспорами. В слоевище зооспоры, обычно, не образуются. Вместо них появляются апланоспоры — относительно маленькие клетки с толстыми стенками, хорошо приспособленные к засушливым условиям. Из клеточных структур зеленых фотобионтов наибольшим изменениям подвергается оболочка. Она тоньше, чем у тех же водорослей «на воле», и имеет ряд биохимических различий. Очень часто внутри симбиотических клеток наблюдают жироподобные зернышки, которые после изъятия водоросли из слоевища исчезают. Говоря о причинах этих различий, можно предположить, что они связаны с каким-то химическим воздействием грибного соседа водоросли.Сам микобионт также испытывает воздействие водорослевого партнера. Плотные комочки изолированных микобионтов, состоящие из тесно переплетенных гиф, внешне совсем не похожи на лихенизированные грибы. Внутреннее строение гиф тоже различно. Клеточные стенки гиф в симбиотическом состоянии значительно тоньше.

Итак, жизнь в симбиозе побуждает водоросль и гриб менять свой внешний облик и внутреннее строение.

Что же получают сожители друг от друга, какую пользу извлекают из совместного существования? Водоросль снабжает гриб, своего соседа по лишайниковому симбиозу, углеводами, полученными в процессе фотосинтеза.Водоросль, синтезировав тот или иной углевод, быстро и почти целиком отдает его своему грибному «сожителю». Гриб получает от водоросли не только углеводы. Если синезеленый фотобионт фиксирует атмосферный азот, существует быстрый и устойчивый отток образовавшегося аммония к грибному соседу водоросли. Водоросль же, очевидно, просто получает возможность широко расселяться по Земле. По словам Д. Смита, «наиболее частая у лишайников водоросль, требуксия, очень редко живет вне лишайника. Внутри же лишайника она распространена, пожалуй, шире, чем любой род свободноживущих водорослей. Цена за занятие этой ниши — снабжение гриба-хозяина углеводами».

Литература

Лишайники — википедия

Биохимические особенности

Большинство внутриклеточных продуктов, как фото-(фико-), так и микобионтов не являются специфичными для лишайников. Уникальные вещества (внеклеточные), так называемые лишайниковые, формируются исключительно микобионтом и накапливаются в его гифах. Сегодня известно более 600 таких веществ, например, усниновая кислота, мевалоновая кислота. Нередко, именно эти вещества оказываются решающими в формировании окраски лишайника. Лишайниковые кислоты играют важную роль в выветривании, разрушая субстрат.

Водный обмен

Лишайники не способны к регуляции водного баланса, поскольку у них нет настоящих корней для активного поглощения воды и защиты от испарения. Поверхность лишайника может удерживать воду на короткое время в форме жидкости или пара. В сухих условиях вода быстро теряется на поддержание метаболизма и лишайник переходит в фотосинтетически неактивное состояние, при котором вода может составлять не более 10 % массы. В отличие от микобионта, фотобионт не может долго находиться без воды. Сахар трегалоза играет важную роль в защите жизненно важных макромолекул, таких как ферменты, мембранные элементы и ДНК. Но лишайники нашли способы предотвращения полной потери влаги. У многих видов наблюдается утолщение коры, чтобы обеспечить меньшую потерю воды. Способность поддерживать воду в жидком состоянии очень важна в холодных районах, поскольку замёрзшая вода не пригодна для использования организмом.

Время, которое лишайник может провести высушенным, зависит от вида, известны случаи «воскрешения» после 40 лет в сухом состоянии. Когда поступает пресная вода в форме дождя, росы или влажности, лишайники быстро переходят в активное состояние, возобновляя метаболизм. Оптимально для жизнедеятельности, когда вода составляет от 65 до 90 процентов от массы лишайника. Влажность в течение дня может изменяться в зависимости от темпов фотосинтеза, как правило, она наиболее высока с утра, когда лишайники смачиваются росой.

Рост и продолжительность жизни

Описанный выше ритм жизни является одной из причин для очень медленного роста большинства лишайников. Иногда лишайники растут всего лишь на несколько десятых миллиметра в год, в основном менее чем на один сантиметр. Другой причиной медленного роста является то, что фотобионт, составляя нередко менее 10 % объёма лишайника, берёт на себя обеспечение микобионта питательными веществами. В хороших условиях, с оптимальными влажностью и температурой, например в туманных или дождливых тропических лесах, лишайники растут на несколько сантиметров в год.

Ростовая зона лишайников у накипных форм находится по краю лишайника, у листоватых и кустистых — на каждой верхушке.

Лишайники являются одними из самых долгоживущих организмов и могут достигать возраста нескольких сотен лет, а в некоторых случаях — более 4500 лет, как например Rhizocarpon geographicum, живущий в Гренландии.

Размножение

Лишайники размножаются вегетативным, бесполым и половым путём.

Особи микобионта размножаются всеми способами и в то время, когда фотобионт не размножается или размножается вегетативно. Микобионт может, как и другие грибы, также размножаться половым и собственно бесполым путем. Половые споры в зависимости от того, относится микобионт к сумчатым или базидиальным грибам, называются аско- или базидиоспорами и образуются соответственно в асках (сумках) или базидиях.

Вопрос взаимоотношения гриба и водоросли в слоевище лишайника занимал умы ученых еще в конце прошлого столетия, да и в наше время продолжает волновать лихенологов. Со дня открытия С.Швендера прошло более 100 лет. За этот период появилось не менее десятка теорий, пытающихся объяснить отношение между грибом и водорослью, однако среди них нет ни одной общепризнанной и окончательно доказанной. С.Швендер, обнаружив, что лишайник состоит из гриба и водоросли, предположил, что гриб в слоевище паразитирует на водоросли. Однако он ошибочно отвел роль хозяина, а водоросли-раба.

Но уже в те времена некоторые ученые выдвинули мысль о двустороннем паразитизме компонентов лишайника – гриба на водоросли и водоросли на грибе. При этом было высказано предположение, что гриб и водоросль в слоевище лишайника находятся в полном морфофизиологическом единстве и связаны между собой так же, как корни и листья цветковых растений. Такое сравнение, безусловно, было совсем необоснованным.

Наибольшее распространение среди ученых того времени получила теория мутуалистического симбиоза. Сторонники этой теории считали, что в слоевище лишайника гриб и водоросль находятся во взаимовыгодном симбиозе: водоросль «снабжает» гриб органическими веществами, а гриб «защищает» водоросль от чрезмерного нагревания и освещения и «обеспечивает» ее водой и неорганическими солями. Однако в 1873 г. этой идеалистической теории был нанесен удар. Известный французский исследователь Е.Борне, изучая анатомическое строение слоевища лишайников, обнаружил внутри водорослевых клеток грибные отростки – гаустории, всасывающие органы гриба. Это позволяло думать, что гриб использует содержимое клеток водорослей, т. е. ведет себя как паразит.

За прошедшие со времен Борне 100 лет в слоевище лишайников было открыто и описано много различных форм абсорбционных, или всасывающих, гиф гриба. Эти гифы плотно прижимаются к клетке водоросли или проникают в нее и служат, как предполагают, для передачи веществ, которые образуют водоросли в результате своей жизнедеятельности, грибному компоненту.

О том, что в слоевище лишайника происходит обмен веществами между грибом и водорослью, ученые стали говорить сразу после открытия двойственной природы лишайников. Однако некоторые экспериментальные подтверждения этим предположениям были получены лишь за последние три десятилетия. Применение новейших методов физиологических исследований с использованием меченых атомов углерода и азота, особых красящих веществ и некоторых других позволило установить, что гриб получает вещества, ассимилируемые водорослью, и ведет себя в слоевище лишайника как паразитический организм. Однако для существования как самого гриба, так и лишайника в целом необходимо, чтобы водоросль, окруженная со всех сторон грибными гифами, все-таки могла жить и более или менее нормально развиваться. Если гриб начнет проявлять себя слишком активно, поражать все без исключения водоросли и, использовав их содержимое, уничтожать их, это в конце концов может при вести к гибели всех водорослей слоевища. Но тогда, уничтожив весь свой запас питания, погибнет и сам гриб, а значит, перестанет существовать и лишайник.

Гриб должен использовать лишь часть водорослей, оставляя резерв – здоровые и нормальные водоросли, содержимым которых он мог бы питаться.

Учеными были замечены любопытные защитные реакции со стороны лишайниковых водорослей. Например, одновременно с проникновением гаустория в клетку водоросли эта клетка делилась. При этом плоскость деления, как правило, проходила как раз через участок, занятый гаусторием, а образовавшиеся в результате этого процесса дочерние клетки были свободны от гаусториев. Было замечено также, что обычно гриб поражает водоросли, уже достигшие определенной стадии зрелости. Однако большей частью защитная реакция водорослей против активности грибного компонента очень слаба.

Способность водорослей нормально развиваться и даже размножаться в слоевище лишайника сохраняется скорее благодаря умеренности паразитизма самого гриба.

Ученые отмечают, что степень паразитизма гриба на водоросли различна не только у разных видов лишайников, но даже в одном и том же слоевище. Резкий паразитизм обнаружен лишь у примитивных лишайников. Гаустории, проникающие глубоко внутрь протопласта водоросли, пока что были найдены лишь у наиболее просто организованных форм, в слоевище которых еще нельзя различить оформленных дифференцированных слоев. В слоевищах более высокоорганизованных лишайников часть клеток водорослей поражена грибными гифами, а остальные продолжают нормально жить и развиваться. Обычно у высокоорганизованных форм лишайников паразитизм гриба на водоросли носит весьма умеренный характер: прежде чем гриб убьет пораженные им клетки, успевает вырасти одно или несколько поколений водорослей.

Отношения между мико- и фикобионтом в слоевище лишайника не сводятся только к паразитизму гриба на водоросли. Ученые предполагают, что эти отношения гораздо сложнее. Еще в начале нашего века крупнейший русский лихенолог А.А.Еленкин, изучая анатомическое строение лишайников, обнаружил в их слоевище некральные зоны водорослей – скопления отмерших, потерявших зеленую окраску клеток, расположенные несколько ниже зоны живых водорослей. К этим бесцветным мертвым клеткам водорослей тоже тянулись грибные гифы. Это привело Л. А. Еленкина к мысли, что гриб в слоевище лишайника вначале проявляет себя как паразитический организм, поражая живые клетки водоросли и используя их содержимое. Затем, убив водоросль, гриб переходит к сапрофитному способу питания, поглощая и ее мертвые остатки. Таким образом, гриб в слоевище лишайника ведет себя и как паразит, и как сапрофит. И отношения между грибом и водорослью в слоевище лишайника Л. А. Еленкин назвал эндопаразитосапрофитизмом.

Интересную мысль о взаимоотношении компонентов в слоевище лишайника высказал в 60-х годах нашего столетия крупнейший советский лихенолог А.Н.Окснер. Он пришел к выводу, что водоросль в слоевище лишайника, полностью изолированная от внешней среды грибной тканью, обязательно должна забирать у грибного компонента все необходимые для своего существования вещества, за исключением тех органических соединений, которые она сама вырабатывает на свету в процессе

ассимиляции углекислоты. К этим жизненно необходимым для водоросли веществам относится прежде всего вода, а также минеральные соли, азотистые и некоторые другие неорганические соединения. Следовательно, и водоросль в слоевище лишайника проявляет себя как паразит. Причем это вовсе не противоречит общему характеру ее питания. Как показало изучение лишайниковых водорослей в чистых культурах, многие из них, будучи большей частью автотрофными организмами, способны и к миксотрофному питанию.

Таким образом, ученые считают, что водорослевый и грибной компоненты лишайника находятся в очень сложных взаимоотношениях. Микобионт ведет себя как паразит и сапрофит на теле водоросли, а фикобионт, в свою очередь, паразитирует на лишайниковом грибе. При этом паразитизм фикобионта всегда носит более умеренный характер, чем паразитизм гриба.

Однако все высказанные по этому поводу точки зрения до сих пор остаются лишь догадками и большей частью не подтверждены экспериментально: лишайники оказались очень трудным объектом для физиологических исследований. Ученые пока не научились выращивать и поддерживать в живом состоянии слоевище лишайников в искусственных условиях. Время от времени появляются сообщения об удачных опытах выращивания лишайника в условиях лаборатории, но пока эти сообщения единичны и не всегда достоверны.

Одной из причин неудач подобных попыток можно считать чрезвычайно медленный рост лишайников. Лишайники – многолетние растения. Обычно возраст взрослых слоевищ, которые можно увидеть где-нибудь в лесу на стволе деревьев или на почве, составляет не менее 20 – 50 лет. В северных тундрах возраст некоторых кустистых лишайников рода кладония достигает 300 лет. Слоевище лишайников, имеющих вид корочки, в год дает прирост всего 0,2 – 0,3 мм.

Кустистые и листоватые лишайники растут несколько быстрее – в год их слоевище увеличивается на 2 – 3 мм. Поэтому, чтобы вырастить взрослый лишайник в лаборатории, требуется не менее 20 лет, а может быть, и вся жизнь исследователя. Трудно проводить столь долговременный эксперимент!

Вот почему физиологические особенности лишайников, в том числе взаимоотношения компонентов, как правило, изучают на культурах изолированных мико- и фикобионтов. Этот метод очень перспективен, так как позволяет ставить длительные и воспроизводимые опыты. Но, к сожалению, данные, полученные этим методом, не могут полностью отразить те процессы, которые происходят в целом слоевище лишайника.

И тем более мы не вправе считать, что в природе, в естественных условиях, в слоевищах лишайника эти процессы протекают точно так же, как в культурах изолированных симбионтов. Вот почему все теории, пытающиеся объяснить взаимоотношения компонентов лишайников, остаются пока лишь догадками.

Более успешным оказалось изучение форм контакта между гифами гриба и клетками водорослей в слоевищах лишайников. Как показали исследования с применением электронной микроскопии, в слоевище лишайников можно встретить по крайней мере пять типов контакта между грибными гифами и водорослевыми клетками.

Чаще всего отдельная клетка водоросли и клетка грибной гифы находятся в непосредственном контакте друг с другом. В таком случае гриб образует специальные абсорбционные, всасывающие органы, которые проникают внутрь водорослевой клетки или плотно прижимаются к ее оболочке.

В настоящее время среди абсорбционных органов гриба в слоевище лишайников различают несколько типов: гаустории, импрессории и аппрессории.

Гаустории– это боковые выросты гиф гриба, которые прорывают оболочку клетки водоросли и проникают в ее протопласт. Обычно в клетке водоросли развивается один гаусторий, но иногда их может быть и два. В слоевище лишайника гаустории встречаются в большом количестве и существуют продолжительное время. Различают интрацеллюлярные (внутриклеточные) и интрамембранные (внутриоболочковые) гаустории.

Интрацеллюлярныегаустории полностью прорывают оболочку клетки водоросли и проникают глубоко внутрь ее протопласта. Интрацеллюлярные гаустории образуются в случае резкого паразитизма гриба на водоросли. Это особенно характерно для лишайников с примитивным строением слоевища.

У более высокоорганизованных лишайников образуются только интрамембранныегаустории. Они прорывают оболочку клетки водоросли и достигают ее протопласта, но не углубляются в него, а остаются в оболочке водорослевой клетки. Наибольшее количество интрамембранных гаусториев образуется в слоевище лишайников весной, в начале вегетационного периода. С наступлением осени они далеко отступают от протопласта водоросли.

Другой тип всасывающих органов гриба – импрессории– тоже боковые выросты грибных гиф, но, в отличие от гаусториев, они не прорывают оболочку клетки водоросли, а вдавливают ее внутрь. Импрессории отмечены у очень многих лишайников, например у широко распространенной пельтигеры (Ре1tigera).

Интересно, что в слоевищах, произрастающих во влажных местообитаниях, импрессории почти не развиваются, у тех же видов в сухих местообитаниях они образуются в большом количестве. При длительной засухе число импрессориев также увеличивается. Предполагают, что в засушливые периоды и в сухих местообитаниях гриб, чтобы удовлетворить потребности в питании, увеличивает свою всасывающую поверхность за счет увеличения количества и размеров импрессориев.

В отличие от гаусториев и импрессориев, образованных боковыми отростками гифы, аппрессорииобразуются вершиной грибной гифы. Такая вершина гифы плотно прижимается снаружи к оболочке клетки водоросли, никогда не проникая ни в ее протопласт, ни в ее внутренний слой.

Наличие в слоевищах многих лишайников абсорбционных органов гриба хорошо доказывает паразитическую сущность отношений микобионта к фикобионту. Но во многих случаях у лишайникового гриба все же не удается обнаружить особых абсорбционных органов, чаще всего у лишайников, фикобионт которых имеет тонкие оболочки клеток. В таких случаях уже внешний контакт гифы гриба и клетки водоросли может обеспечить обмен веществами между ними. Иногда гифы полностью оплетают водоросли в виде сплошного покрова и при этом, сливаясь своими стенками, даже образуют клеточную псевдопаренхимную ткань. На первый взгляд кажется, что водоросли не особенно страдают от плотного окружения гифами гриба: они долго сохраняют свою зеленую окраску и продолжкают интенсивно делиться.

Но в более старых участках слоевища можно найти немало отмерших обесцвеченных клеток – гриб рано или поздно все-таки убивает водоросли.

Такой же тип контакта между гифами гриба и клетками водорослей был найден у некоторых слизистых и базидиальных лишайников.

У ряда лишайников, в слоевище которых встречаются нитчатые улотриксовые водоросли, можно наблюдать еще один тип контакта. Как правило, в таком случае нити водорослей бывают целиком покрыты грибными гифами. При чем лишь иногда гифы образуют на поверхности водорослевой нити рыхлую сетку. Чаще же они располагаются очень густо и, срастаясь своими стенками, образуют сплошной чехол. Отдельная лопасть такого лишайника имеет вид тончайшего волоса. Под микроскопом она напоминает полую трубку, стенки которой образованы сросшимися грибными гифами; внутри трубки тянется нить водоросли.

Описанные выше формы контакта между гифами микобионта и клетками водорослей, по всей видимости, не исчерпывают всего многообразия способов, с помощью которых гриб и водоросль в слоевище лишайников устанавливают между собой тесную связь. Исследования в этом направлении только начинаются. Можно думать, что дальнейшее изучение тончайших структур лишайникового слоевища с помощью электронного микроскопа не только даст много нового в описании физических контактов между грибным и водорослевым компонентами лишайников, но и откроет новые горизонты в понимании их взаимоотношений.